LESSON PLAN Name of faculty: - Sh Harsh Choudhary Discipline:- Mechanical Engineering Semester:- 3rd Subject:- Strength of Material | WEEK | LECTURE
DAY | THEORY | PRACTICAL | |----------------------|---------------------|--|----------------------------------| | | | Topic (Including Assignment/test) | Topic | | 1 st week | 1 st day | Unit 1: Stresses and Strains Basics concept ofload,stressandstrain | 1.Tensile test of mild steel bar | | | 2 nd day | Tensile, compressive, shear stress | | | | 3 rd day | Linear, lateral, shear, volumetric strain
Concept of elasticity, elasticlimit, limitof
proportionality | | | 2 nd week | 1 st day | Hooks law, elastic constant, nominal strain | 2.Tensile test of aluminum bar | | | 2 nd day | stress strain curve for ductile and brittle
material | | | | 3 rd day | Yieldpoint, plasticstage,ultimateand
breaking stress Percentage
elongation, proof and working stress | | | 3 rd week | 1 st day | Factorofsafety, poison'sratio, thermal stress and strain, introduction to principal stresses | Revision of practical no 1 | | | 2 nd day | Longitudinal and circumferential
stresses Inseamlessthin walled
cylindricalshells | | | | 3 rd day | Unit2: Resilience
strain energy, resilience, proof resilience
and modulus of resilience | | | 4 th week | 1 st day | Strain energy due to direct stress and shear stress | Revision of practical 2 | | 2 nd day | Stress due to gradual,sudden andfalling load | |---------------------|--| | 3 rd day | Unit3: Moment of Inertia conceptof moment of inertia | | | | 1 | | |----------------------|---------------------|---|---------------------------------| | 5 th week | 1 st day | Theorem of perpendicular and parallel axis | 3. Bending tests on a steel bar | | | 2 nd day | Second moment of area of rectangle
,triangle, circleandnumerical of these | | | | 3 rd day | Second moment of area for L,T,I and numerical Section modulus | | | 6 th week | 1 st day | Numerical problems and revision | 4. Bending tests on wooden bar | | | 2 nd day | Unit4: Bending Moment and Shearing Fours Concept of various types of beams and loading | | | | 3 rd day | Concept of end supports,hingedand fixed,
Concept of bending moment and shear
force | | | 7 th week | 1 st day | B.M and S.Fdiagram for cantilever beam | 5. Impact test on IZOD test | | | 2 nd day | B.M.andS.F diagram for simply supported beam | | | | 3 rd day | B.Mand S.F diagram of cantilever and simply supportedbeams withorwithout overhang and U.D.L | | | 8 th week | 1 st day | Numerical problems | 6. Impact test on CHARPY test | | | 2 nd day | Unit5: Bending Stresses | | | | | concepts of bending stresses | | | | 3 rd day | Theoryofsimplebending , Derivation of bending equation | | | | | 1 | L | | 9 th week | 1 st day | Concept of moment of resistance | 7. Torsion test of solid specimen of circular section of different metals for | |-----------------------|---------------------|---|---| | | 2 nd day | Bending stress diagram, section modulus for rectangles | determining modulus of rigidity | | | ord I | Ocation madeline for circular and | | | | 3 rd day | Section modulus for circular and symmetrical Isection, Bendingstressin beams of rectangular | | | 10 th week | 1 st day | Bendingstressincircular andT section | Revision of practical 7 | | | 2 nd day | Numerical and revision | | | | 3 rd day | Unit6: Columns | | | | | Concept of column, modes of failure,
Types of columns, modes of failure of
column | | | 11 th week | 1 st day | Buckling load, crushing load, slenderness ratio | 8.To plot a graph between
load and extension and to
determine thestiffness of a | | | 2 nd day | Effective length, end restraints | helical spring | | | 3 rd day | Factor effecting strength of a column, Strength of column by Euler formula without derivation | | | 12 th week | 1 st day | Rankin gourdan formula | Revision of practical 8 | | 12 WEEK | i uay | Kankin gourdan formula | Revision of practical o | | | 2 nd day | Unit7: Torsion | | | | | concept of torsion, difference between torque andtorsion | | | | 3 rd day | Derivationof torsion equation, Useof torsion equation for circular shaft (solid and hollow) | | | 13 th week | 1 st day | Comparison of solid and hollow shaft | 9.hardness teston different material | | | 2 nd day | Power transmitted by shaft | | | | 3 rd day | Conceptofmeanandmaximum torque | | | 14 th week | 1 st day | Unit8: Springs | Revision of practical 9 | |-----------------------|--|--|---| | | - | Closed coil helical springs subjected to
axial load | | | | 2 nd day | Calculation of stress deformation | | | | 3 rd day | Stiffness, angle of twist, strainenergy | | | 15 th week | 1 st day | Numerical problems | Revision ofpractical 9 on another metal | | | 2 nd day | Determination of number ofplatesof laminated springs | | | | 3 rd day | Revision Discuss on problems | | | 16 th week | 1 st day
2 nd day | Numerical problems | Viva question | | | 3 rd day | Numerical problems | | | | | Numerical problems | | | 17 th week | 1 st day | Revision | Viva question | | | 2 nd day | Revision | | | | 3 rd day | Revision | |