CH. BANSI LAL GOVT POLYTECHNIC BHIWANI SUBJECT: MECHANICAL ENGG. DRAWING-II SEMESTER: 3RD LIMITS, FITS AND TOLERANCES No two parts can be produced with identical measurements by any manufacturing process. In any production process, regardless of how well it is designed or how carefully it is maintained, a certain amount of variation (natural) will always exist. #### Variations arises from; - Improperly adjusted machines - Operator error - Tool wear - Defective raw materials etc. Such variations are referred as 'assignable causes' and can be identified and controlled. • It is impossible to produce a part to an exact size or basic size, some variations, known as tolerances, need to be allowed. The permissible level of tolerance depends on the functional requirements, which cannot be compromised. No component can be manufactured precisely to a given dimension; it can only be made to lie between two limits, upper (maximum) and lower (minimum). Designer has to suggest these tolerance limits to ensure satisfactory operation. • The difference between the upper and lower limits is termed permissive tolerance. # UCTION ### Example Shaft has to be manufactured to a diameter of 40 ± 0.02 mm. The shaft has a basic size of 40 mm. It will be acceptable if its diameter lies between the limits of sizes. Upper limit of 40+0.02 = 40.02 mm Lower limit of 40-0.02 = 39.98 mm. Then, permissive tolerance is equal to 40.02 - 39.98 = 0.04 mm. # Need of Limit, Fits and Tolerances - Mass Production And Specialization - Standardization - Interchangeability ## Tolerances - To satisfy the ever-increasing demand for accuracy. - Parts have to be produced with less dimensional variation. - It is essential for the manufacturer to have an in-depth knowledge of the tolerances to manufacture parts economically, adhere to quality and reliability To achieve an increased compatibility between mating parts. # Tolerances - The algebraic difference between the upper and lower acceptable dimensions. - It is an absolute value. - The basic purpose of providing tolerances is to permit dimensional variations in the manufacture of components, adhering to the performance criterion. # Classification of Tolerance - 1. Unilateral tolerance - 2. Bilateral tolerance - 3. Compound tolerance - 4. Geometric tolerance # Classification - 1. Unilateral tolerance - of Tolerance When the tolerance distribution is only on one side of the basic size. - When the tolerance distribution is only on one side of the basic size. Either positive or negative, but not both. ## 1. Unilateral tolerance: Below # 1. Unilateral tolerance: ### Above zero line Positive #### Z. Dilateral # to erance When the tolerance distribution lies on either side of the basic size. - It is not necessary that Zero line will divide the tolerance zone equally on both sides. - It may be equal or unequal # Classification of Tolerance ### 3. Compound tolerance Tolerance for the dimension *R* is determined by the combined effects of tolerance on 40 mm dimension, on 60°, and on 20 mm dimension # of Tolerance #### 4. Geometric tolerance Geometric dimensioning and tolerancing (GD&T) is a method of defining parts based on how they function, using standard symbols. 4. Geometric tolerance Classification Feature control frame $\phi 0.01$ - Diameters of the cylinders need be concentric with each other. - For proper fit between the two cylinders, both the centres to be in line. - This information is represented in the feature control frame. - Feature control frame comprises three boxes. 4. Geometric tolerance of Tolerance - First box: On the left indicates the feature to be controlled, represented symbolically (example: concentricity). - Centre box: indicates distance between the two cylinders, centres cannot be apart by more than 0.01 mm (Tolerance). - Third box: Indicates that the datum is with X. # MAXIMUM AND MINIMUM METAL CONDITIONS Consider a shaft having a dimension of 40 ± 0.05 mm and Hole having a dimension of 45 ± 0.05 mm. #### For Shaft Maximum metal limit (MML) = 40.05 mm Least metal limit (LML) = 39.95 mm #### For Hole Maximum metal limit (MML) = 44.95 mm Least metal limit (LML) = 45.05 mm ### FITS The Assembly of Two Mating Parts is called Fit. - * RUNNING FIT: One part assembled into other so as to allow motion eg. Shaft in bearing - ❖ PUSH FIT: One part is assembled into other with light hand pressure & no clearance to allow shaft to rotate as in locating plugs. - ❖ DRIVING FIT: One part is assembled into other with hand hammer or medium pressure. Eg pulley fitted on shaft with a key - ❖ FORCE FIT: One part is assembled into other with great pressure eg. Cart wheels, railway wheels ### FITS The degree of tightness and or looseness between the two mating parts. Three basic types of fits can be identified, depending on the actual limits of the hole or shaft. - 1. Clearance fit - 2. Interference fit - 3. Transition fit ## 1. Clearance fit Upper limit of shaft is less than the lower limit of the hole. The largest permissible dia. of the shaft is smaller than the dia. of the smallest hole. E.g.: Shaft rotating in a bush # 2. Interference fit Upper limit of the hole is less than the lower limit of shaft. - No gap between the faces and intersecting of material will occur. - Shaft need additional force to fit into the hole. # 3. Transition fit Dia, of the largest permissible hole is greater than the dia, of the smallest shaft. - Neither loose nor tight like clearance fit and interference fit. - Tolerance zones of the shaft and the hole will be overlapped between the interference and clearance fits. # Detailed classification of Fits | Description of fit | Class of fit | Application area | | | | | | |--------------------|--------------|---|--|--|--|--|--| | Clearance fit | | | | | | | | | Slide | H7/h6 | Sealing rings, bearing covers, movable gears in change gear trains, clutches, etc. | | | | | | | Easy slide | H7/g7 | Lathe spindle, spigots, piston, and slide valves | | | | | | | Running | H8/f8 | Lubricated bearings (with oil or grease), pumps and smaller motors, gear boxes, shaft pulleys, etc. | | | | | | | Slack running | H8/c11 | Oil seals with metal housings, multi-spline shafts, etc. | | | | | | | Loose running | H8/d9 | Loose pulleys, loose bearings with low revolution, etc. | | | | | | | Interference fit | | | | | | | | |------------------|--------------|---|--|--|--|--|--| | Force or press | H8/r6 | Crankpins, car wheel axles, bearing bushes in castings, etc. | | | | | | | Driving | H7/s6 | Plug or shaft slightly larger than the hole | | | | | | | Tight | H7/p6 | Stepped pulleys on the drive shaft of a conveyor | | | | | | | Shrink | H7/u6, H8/u7 | Bronze crowns on worm wheel hubs, couplings, gear wheels, and assembly of piston pin in IC engine piston | | | | | | | Freeze | H7/u6, H8/u7 | Insertion of exhaust valve seat inserts in engine cylinder blocks and insertion of brass bushes in various assemblies | | | | | | | Transition fit | | | | | | |----------------|-------|---|--|--|--| | Push or snug | H7/k6 | Pulleys and inner ring of ball bearings on shafts | | | | | Wringing | H7/n6 | Gears of machine tools | | | | # GeneralTerminologyinFits # Clearance Fit (e.g.: H7/f6) # Clearance Fit (pl. H7/f6) # Clearance Fit (pl. H7/f6) ## Tolerance Grade - Tolerance grades indicates the degree of accuracy of manufacture. - IS: 18 grades of fundamental tolerances are available. - Designated by the letters IT followed by a number. - The ISO system provides tolerance grades from IT01, IT0, and IT1 to IT16. - Tolerance values corresponding to grades IT5 IT16 are determined using the standard tolerance unit (*i*, in μm), which is a function of basic size. # Tolerance Grade $$i = 0.453 \sqrt[3]{D} + 0.001D$$ microns - D = diameter of the part in mm. - 0.001D = Linear factor counteracts the effect of measuring inaccuracies. - Value of tolerance unit 'i' is obtained for sizes up to 500 mm. - D is the geometric mean of the lower and upper diameters. • D= $$\sqrt{D_{\text{max}} \times D_{\text{min}}}$$ # e Grade Standard tolerance units | Tolerance grade | IT6 | IT7 | IT8 | IT9 | IT10 | IT11 | IT12 | IT13 | IT14 | IT15 | IT16 | |-----------------------------|-----|-----|-----|-----|------|------|------|------|------|------|------| | Standard tolerance unit (i) | 10 | 16 | 25 | 40 | 64 | 100 | 160 | 250 | 400 | 640 | 1000 | # Tolerances grades for applications | Fundamental tolerance | Applications | |-----------------------|--| | IT01-IT4 | For production of gauges, plug gauges, and measuring instruments | | IT5-IT7 | For fits in precision engineering applications such as ball bearings, grinding, fine boring, high-quality turning, and broaching | | IT8-IT11 | For general engineering, namely turning, boring, milling, planning, rolling, extrusion, drilling, and precision tube drawing | | IT12-IT14 | For sheet metal working or press working | | IT15-IT16 | For processes such as casting, stamping, rubber moulding, general cutting work, and flame cutting | #### General Terminology #### General Terminology - Basic size: Exact theoretical size arrived at by design. Also called as nominalsize. - Actual size: Size of a part as found by measurement - Zero Line: Straight line corresponding to the basic size. Deviations are measured from this line. - Limits of size: Maximum and minimum permissible sizes for a specific dimension. - Tolerance: Difference between the maximum and minimum limits of size. - Allowance: LLH -HLS #### Terminolo Deviation: Algebraic difference between a size and its corresponding basic size. It may be positive, negative, or zero. • Upper deviation: Algebraic difference between the maximum limit of size and its corresponding basic size. Designated as 'ES' for a hole and as 'es' for a shaft. Lower deviation: Algebraic difference between the minimum limit of size and its corresponding basic size. Designated as 'El' for a hole and as 'ei' for a shaft. ## General Terminology - Actual deviation: Algebraic difference between the actual size and its corresponding basic size. - Tolerance Zone: Zone between the maximum and minimum limit size. #### **Hole Basis and Shaft Basis Systems** To obtain the desired class of fits, either the size of the hole or the size of the shaft must vary. Two types of systems are used to represent three basic types of fits, clearance, interference, and transition fits. - (a) Hole basis system - (b) Shaft basis system. #### Hole Basis systems - The size of the hole is kept constant and the shaft size is varied to give various types of fits. - Lower deviation of the hole is zero, i.e. the lower limit of the hole is same as the basic size. - Two limits of the shaft and the higher dimension of the hole are varied to obtain the desired type of fit. (a) Clearance fit (b) Transition fit (c) Interference fit Hole Basis systems This system is widely adopted in industries, easier to manufacture shafts of varying sizes to the required tolerances. Standard-size plug gauges are used to check hole sizes accurately. #### Shaft Basis systems - The size of the shaft is kept constant and the hole size is varied to obtain various types of fits. - Fundamental deviation or the upper deviation of the shaft is zero. - System is not preferred in industries, as it requires more number of standardsize tools, like reamers, broaches, and gauges, increases manufacturing and inspection costs. (a) Clearance fit (b) Transition fit (c) Interference fit # symbols Used to specify the tolerance and fits for mating components. Example: Consider the designation 40 H7/d9 - Basic size of the shaft and hole = 40 mm. - Nature of fit for the hole basis system is designated by H - Fundamental deviation of the hole is zero. - Tolerance grade: IT7. - The shaft has a d-type fit, the fundamental deviation has a negative value. - IT9 tolerance grade. ## Tolerance symbols - First eight designations from A (a) to H (h) for holes (shafts) are used for clearance fit - Designations, JS (js) to ZC (zc) for holes (shafts), are used for interference or transition fits ### Tolerance symbols • Fundamental Deviation: Deviation either the upper or lower deviation, nearest to the zero line. (provides the position of the tolerance zone). It may be positive, negative, or zero. - Upper deviation: Designated as 'ES' for a Hole and as 'es' for a shaft. - Lower deviation: Designated as 'El' for a Hole and as 'ei' for a shaft. Typical representation of different types of fundamental deviations (a) Holes (internal features) (b) Shafts (external features) Fundamental deviation for shafts and holes of sizes from above 500 to 3150 mm | Shafts | | | | Holes | | Formula for deviations in µm | | | |--------|-----------------------|---------|------|-----------------------|---------|---|--|--| | Туре | Fundamental deviation | Sign | Туре | Fundamental deviation | Sign | (for D in mm) | | | | d | es | - | D | El | + | 16D ^{0.44} | | | | е | es | - | E | El | + | 11D ^{0.41} | | | | f | es | 2 | F | El | + | 5.5D ^{0.41} | | | | g | es | - | G | El | + | 2.5D ^{0.34} | | | | h | es | No sign | Н | El | No sign | 0 | | | | js | ei | - | JS | ES | + | 0.5ITπ | | | | k | ei | = | K | ES | 100 | 0 | | | | m | ei | + | М | ES | - | 0.024D + 12.6 | | | | n | ei | + | N | ES | - | 0.04D + 21 | | | | Р | ei | + | Р | ES | 11- | 0.072D + 37.8 | | | | г | ei | + | R | ES | - | Geometric mean of the values for p and s or P and S | | | | S | ei | + | S | ES | ir: | IT7 + 0.4D | | | | t | ei | + | T | ES | - | IT7 + 0.63D | | | | u | ei | + | U | ES | - | 1T7 + D | | | #### Tolerance Grade - BIS: 18 grades of fundamental tolerances are available. - Designated by the letters IT followed by a number. - ISO/BIS: IT01, IT0, and IT1 to IT16. - Tolerance values corresponding to grades IT5 IT16 are determined using the standard tolerance unit (i, in µm) #### Tolerance Grade $$i = 0.453 \sqrt[3]{D} + 0.001D$$ microns Tolerance unit, - D =diameter of the part in mm. - 0.001D = Linear factor counteracts the effect of measuring inaccuracies. - Value of tolerance unit 'i' is obtained for sizes up to 500 mm. - D is the $\sqrt{D_{\rm max} \times D_{\rm min}}$ ean of the lower and upper diameters. - . D= ## e Grade $$D= \sqrt{D_{\max} \times D_{\min}}$$ The various steps specified for the diameter steps are as follows: - 1-3, 3-6, 6-10, 10-18, 18-30, 30-50, 50-80, 80-120 - 120-180, 180-250, 250-315, 315-400, 400-500 - 500-630, 630-800, and 800-1000 mm. ## e Grade Standard tolerance units | Tolerance grade | IT6 | IT7 | IT8 | IT9 | IT10 | IT11 | IT12 | IT13 | IT14 | IT15 | IT16 | |-----------------------------|-----|-----|-----|-----|------|------|------|------|------|------|------| | Standard tolerance unit (i) | 10 | 16 | 25 | 40 | 64 | 100 | 160 | 250 | 400 | 640 | 1000 | # Maximum and Minimum Metal Conditions - ✓ Let us consider a shaft having a dimension of 40 ± 0.05 mm. - ✓ The maximum metal limit (MML) of the shaft will have a dimension of 40.05 mm because at this higher limit, the shaft will have the maximum possible amount of metal. - ✓ The shaft will have the least possible amount of metal at a lower limit of 39.95 mm, and this limit of the shaft is known as minimum or least metal limit (LML). - ✓ Similarly, consider a hole having a dimension of 45 ± 0.05 mm. - ✓ The hole will have a maximum possible amount of metal at a lower limit of 44.95 mm and the lower limit of the hole is designated as MML. - ✓ For example, when a hole is drilled in a component, minimum amount of material is removed at the lower limit size of the hole. This lower limit of the hole is known as MML. - ✓ The higher limit of the hole will be the LML. At a high limit of 45.05 mm, the hole will have the least possible amount of metal. Chap ter 2 Coup Coupling is a device used to connect two shafts together at their ends for the purpose of transmitting power. #### Uses of Coupling - To provide connection of shafts of units made separately - To allow misalignment of the shafts or to introduce mechanical flexibility. - >To reduce the transmission of shock loads. - >To introduce protection against overloads. - >To alter the vibration characteristics. # > Rigid - > Flexible - Universal Flexible coupling #### Rigid coupling - ➤ Rigid couplings are used when precise shaft alignment is required - ➤ Simple in design and are more rugged - > Generally able to transmit more power than flexible couplings - > Shaft misalignments cannot be compensated **Flanged Coupling** # Flexible Coupling - ➤ A flexible coupling permits with in certain limits, relative rotation and - > variation in the alignment of shafts - ➤ Pins (Bolts) covered by rubber washer or bush is used connect flanges with nuts - ➤ The rubber washers or bushes act as a shock absorbers and insulators. #### Universal Coupling ➤ It is a rigid coupling that connects two shafts, whose axes intersect if extended. It consists of two forks which are keyed to the shafts. The two forks are pin joined to a central block, which has two arms at right angle to each other in the form of a cross (Fig.). The angle between the shafts may be varied even while the shafts are rotating. #### Oldham's Coupling > It is used to connect two parallel shafts whose axes are at a small distance apart. Two flanges, each having a rectangular slot, are keyed, one on each shaft. The two flanges are positioned such that, the slot in one is at right angle to the slot in the other. To make the coupling, a circular disc with two rectangular projections on either side and at right angle to each other, is placed between the two flanges. During motion, the central disc, while turning, slides in the slots of the flanges. Power transmission takes place between the shafts, because of the positive connection between the flanges and the central disc. #### Advantages and Limitations - Advantages - Torsionally stiff - No lubrication or maintenance - Good vibration damping and shock absorbing qualities Less expensive than metallic couplings - More misalignment allowable than most metallic couplings. - Limitations - Sensitive to chemicals and high temperatures - Usually not torsionally stiff enough for positive displacement Larger in outside diameter than metallic coupling - Difficult to balance as an assembly #### Contents - 3. Drilling Jig (Assembly Drawing) - 4. Machine Vices (Assembly Drawing) - 5.I.C. Engine Parts - 1. Piston - 2. Connecting rod (Assembly Drawing) - 3. Crankshaft and flywheel (Assembly Drawing) #### 6. Boiler Parts - 1. Steam Stop Valve (Assembly Drawing) - 2. Blow off cock. (Assembly Drawing) - 7. Mechanical Screw Jack (Assembled Drawing) - 8. Gears - 1. Gear, Types of gears, - 2. Nomenclature of gears and conventional representation - 3. Draw the actual profile of involutes teeth of spur gear by different methods. CHAPTER 3. Drilling Jig (Assembly Drawing) Machin CHAPTER 4. Bill of Materials Machine Vice - Fig. 9.3 | Part No. | art No. Name of Part | | No. Off. | | |----------|---------------------------|------|----------------------|--| | 1. | Base | C.I. | 01 | | | 2. | Movable jaw | M.S. | 01 | | | 3. | Screw | M.S | 01 | | | 4. | Movable jaw clamping bolt | M.S | 01
01
01
01 | | | 5. | Circular nut | M.S | | | | 6. | Hexagonal nut | M.S | | | | 7. | Lock nut | M.S | | | | 8. | Washer | M.S | 01 | | #### CHAPTER 5. I.C. Engine Parts - Piston - Connecting Rod - Crank Shaft and flywheel ### (Pe ### trol ### (Di ### esel Half Sectional Side View ### Connecting Rod Parts list | Part No. | Name | Matt. | Qty | |----------|---------------|----------|-----| | 1 | Rod | FS | 1 | | 2 | Сар | FS | 1 | | 3 | Bearing brass | GM | - 2 | | 4 | Bearing bush | P Bronze | 1 | | 5 | Bolt | MCS | 2 | | 6 | Nut | MCS | 2 | #### Crank Shaft and Flywheel **FLYWHEEL** ### CHAP TER-6. **Blow Off Cock** **Steam Stop Valve** ### Blow Off Cock ## Steam Stop Valve ## Mechanical Screw Tack (Assembled Drawing) # CHAPTER-8 Gears A gear is a rotating machine part having cut teeth ### Classification of Gear - The gears can be classified in the following way:- - Depending on the relative position of the geometrical axes of the driving and driven shaft - 2. Depending upon the housing design. - 3. Depending upon the peripheral Velocity. - 4. Depending upon the shape of teeth. ## Depending on the relative position of the geometrical axes of the driving and driven shaft Parallel Shaft 1.Spur Gears 2.Helical Gears 3.Herringbone #### **Intersecting Shafts** - 1. Miter Gears - 2. Face Gears - 3. Zero Bevel Gears - 4. Straight Bevel Gears - 5. Spiral Bevel Gears #### Non-parallel, Non Intersecting Shafts - 1. Spiral Gears - 2. Hypoid Gears - 3. Worm Gears #### Depending upon the housing design - Open Drives:- The gear drive is without a casing and is subjected to the action of dust and dirt. - Closed Drives:- The gear Drives are enclosed in special casings and are protected against dirt and dust and are properly lubricated. #### Depending upon the peripheral Velocity - 1. Low Velocity: V is < 3 m/s. - 2. Medium Velocity: V=3 to 15 m/s. - 3. High Velocity: V is>15 m/s. #### Depending Upon the Type of Gearing - External Gearing The teeth are provided on the external surfaces - Internal Gearing The teeth are provided on the internal surfaces - Rack and Pinion it has infinite Pitch Diameter # Depend upon shape of teeth of the Gear - Straight teeth Gear it has straight Teeth - Helical teeth Gear it has helical Teeth - Herringbone Teeth Gear same as double helical gears but there is no space between the opposite sets of teeth - Curved Teeth Gear the teeth are Curved ### Gear Nomenclature ### Gear Nomenclature #### 1. Pitch circle Pitch circle is the imaginary circle that rolls without slipping with a pitch circle of a mating gear. #### 2. Pitch Circle Diameter The pitch circle diameter is the diameter of the pitch circle. It is also known as pitch diameter. #### 3. Pressure angle Pressure angle is the angle between the common normal at the point of tooth contact and the common tangent to the pitch circle. The usual pressure angles are 14½° and 20°. #### 4. Pitch point It is a common point of contact between two pitch circles. #### 5. Pitch surface It is the surface of the imaginary rolling cylinder that the toothed gear may be considered to replace. ### Gear Nomenclature #### 6. Addendum The addendum is the radial distance of a tooth from the pitch circle to the top of the tooth. #### 7. Dedendum Dedendum is the circle drawn through the bottom of the teeth. It is also called "root circle". #### 8. Addendum circle It is the circle drawn through the top of the teeth and it is concentric with the pitch circle. #### 9. Dedendum circle It is the circle drawn through the bottom of the tooth. It is also called "root circle". #### 10. Base Circle The base circle of involute gear is the circle from which involute tooth profiles are determined. ### Convention of Gears | Title | Convention | | |-------------|------------|------------------| | Spur gear | | | | Bevel gear | ×. | ((b) | | /Worm wheel | | (+) | | Warm | | | # Draw the actual profile of involutes teeth of spur gear by different methods There are two methods given of construction of Spur gear profile - Tracing Paper Method - Base Circle Method # teeth of spur gear by Problem 13.1. Draw the profile of involute teeth for a gear having 22 teeth and diametral pitch 0.1 tooth/mm. Assume pressure angle = 20°. Use tracing paper method. Solution, Given, $$T = 22, P_d = 0.1 \text{ tooth/mm}, \phi = 20^\circ$$ $$Module, m = \frac{1}{P_d} = \frac{1}{0.1} = 10 \text{ mm}$$ $$Pitch circle diameter, \quad d = m \times T$$ $$= 10 \times 22 = 220 \text{ mm}$$ $$Circular pitch, P_c = \pi \times m$$ $$= \pi \times 10 = 31.4 \text{ mm}$$ $$Addendum = 1 \text{ m} = 10 \text{ mm}$$ $$Addendum circle diameter = d + 2 \times \text{Addendum}$$ $$= 220 + 2 \times 20 = 240 \text{ mm}$$ $$Clearance = 0.157 \text{ m} = 0.157 \times 10 = 1.57 \text{ mm}$$ $$Dedendum = \text{Addendum} + \text{Clearance} = 10 + 1.57 = 11.57 \text{ mm}$$ $$Dedendum circle diameter = d - 2 \times \text{Dedendum} = 220 - 2 \times 11.57 = 196.86 \text{ mm}$$ $$Tooth thickness = \frac{P_c}{2} = \frac{31.4}{2} = 15.7 \text{ mm}$$ $$Fillet radius = \frac{P_c}{8} = \frac{31.4}{2} = 3.9 \text{ mm}$$ # teeth of spur gear Problem 13.1. Draw the profile of involute teeth for a gear having 22 teeth and diametral pitch 0.1 tooth/mm. Assume pressure angle = 20°. Use tracing paper method.