LESSON PLAN

Name of The Faculty : Parul Sharma

Discipline : Common

Semester: 1st

Subject : Applied Physics – I

Lesson Plan Duration: 15 weeks

	Work Load (Theory/Practical) per week (in Hours): L - 02, P - 02				
Week	Theory		Practical		
	Lect ure day	Topic (including assignment/test)	Prac tical day	Topic	
1	1	 Unit – I (Unit & Dimensions) Introduction Definition of Physics, Physical Quantities Fundamental and Derived Quantities 	1	Experiment - 1 • Familiarization of measurement instruments & their parts & taking a reading. – Introduction	
	2	 Units: Fundamental and Derived units System of units: CGS, FPS, MKS, SI Dimension & Dimensional formulae of physical quantities 	2	• Familiarize with the parts – vernier calliper,screw gauge,spherometer,tra velling microscope etc.	
2	3	 SI units of physical quantities Dimensional equations, Principle of homogeneity of dimensions 	3	Take the readings & perform	
	4	 Applications of dimensional equations; Checking of correctness of equation Conversion of system of unit 	4	Experiment - 2 To find diameter of solid cylinder using a vernier calliper - Introduction	
3	5	 Unit – II (Force & motion) Introduction Scalar and vector quantities –(Definition and examples), 	5	Take the readings & perform the experiment	
	6	 Vector Algebra - Addition of Vectors, Triangle & Parallelogram Law Scalar and Vector Product (statement and formula only) 	6	• Revise the experiment	
4	7	Class TestASSIGNMENT	7	Experiment - 3 • To find internal diameter and depth of a beaker using a vernier calliper and hence find its volume Introduction	
	8	 Force and its units Concept of Resolution of force Newton's Law of motion (Statement and examples), 	8	Take the readings	

5	9	• First Sessional Test	9	Do calculation to find its volume & revise theexperiment
	10	 Linear Momentum Law of Conservation of Linear momentum Impulse PTM-I 	10	Experiment - 4 • To find the diameter of wire using screw gauge - Introduction
6	11	 Circular motion Definition of angular displacement, angular velocity, angular acceleration, frequency, time period 	11	Perform experiment & take the readings Revise the experiment
	12	 Relation between linear and angular velocity Centripetal forces (definition and formula only) Centrifugal forces (definition and formula only) 	12	Experiment - 5 • To find thickness of paper using screw gaugeIntroduction
7	13	Application of centripetal force in Banking of roads (derivation for angle of banking)	13	Perform experiment & take the readings
	14	 Rotational Motion : Definition with examples Definition of Torque Definition of angular momentum Moment of inertia & its physical significance 	14	• Revise the experiment
8	15	 Unit – III (Work, Power and Energy) Introduction Work (Definition, Symbol, Formula and SI units) Types of work with example 	15	Experiment - 6 • To determine the thickness of glass strip using a spherometer- Introduction
	16	Class TestASSIGNMENT	16	Perform experiment & take the readings
9	17	 Friction – definition & its simple daily life applications Energy – Definition & its SI unit Examples of transformation of energy 	17	• Revise the experiment
	18	 Kinetic Energy (Definition,formula,examples and its derivation) Potential Energy (Definition,formula,examples and its derivation) 	18	Experiment - 7 • To determine radius of curvature of a given spherical surface by a spherometerIntroduct ion

10	19	• Law of conservation of mechanical energy for freely falling bodies (With Derivation)	19	Perform experiment & take the readings
	20	Simple Numerical problems based on formula of Power and Energy	20	Revise the experiment
11	21	• Second Sessional Test	21	Experiment - 8 • To verify parallelogram law of forces- Introduction
	22	 Unit – IV (Properties of Matter) Introduction Elasticity and plasticity, Deforming force, Restoring force, Example of Elastic and plastic body Definition of Stress and strain PTM-II 	22	Perform experiment & take the readings
12	23	 Hooke's law Modulus of Elasticity Pressure – definition Atmospheric pressure Gauge pressure Absolute pressure 	23	• Revise the experiment
	24	• ASSIGNMENT • Class Test	24	Experiment - 9 • To determine the atmospheric pressure at a place using Fortin's Barometer-Introduction
13	25	 Pascal's law Surface tension: definition, its units Applications of surface tension Effect of temperature on Surface Tension Viscosity: definition, units, effect of temperature on viscosity 	25	(Setting up the apparatus) Perform experiment & take the readings
	26	 Unit – V (Heat and temperature) – Introduction Definition of heat and temperature Difference between heat and Temperature 	26	Experiment - 10 • To determine force constant of spring using Hooke's law- Introduction
14	27	 Principle and working of mercury thermometer Modes of transfer of heat (Conduction, convection and radiation with examples). 	27	 (Setting up the apparatus) Perform experiment & take the readings

	28	 Properties of heat radiation Different scales of temperature and their relationship 		Experiment - 11 • Measuring room temperature with the help of thermometer and its conversion in different scale- Introduction
15	29	• Third Sessional Test	29	Perform experiment & take the readings
	30	Analysis of TestPTM-III	30	Revision of Experiment