LESSON PLAN Name of The Faculty : Parul Sharma Discipline : Common Semester: 1st Subject : Applied Physics – I Lesson Plan Duration: 15 weeks | | Work Load (Theory/Practical) per week (in Hours): L - 02, P - 02 | | | | | |------|--|--|----------------------|---|--| | Week | Theory | | Practical | | | | | Lect
ure
day | Topic (including assignment/test) | Prac
tical
day | Topic | | | 1 | 1 | Unit – I (Unit & Dimensions) Introduction Definition of Physics, Physical Quantities Fundamental and Derived Quantities | 1 | Experiment - 1 • Familiarization of measurement instruments & their parts & taking a reading. – Introduction | | | | 2 | Units: Fundamental and Derived units System of units: CGS, FPS, MKS, SI Dimension & Dimensional formulae of physical quantities | 2 | • Familiarize with the parts – vernier calliper,screw gauge,spherometer,tra velling microscope etc. | | | 2 | 3 | SI units of physical quantities Dimensional equations, Principle of homogeneity of dimensions | 3 | Take the readings & perform | | | | 4 | Applications of dimensional equations; Checking of correctness of equation Conversion of system of unit | 4 | Experiment - 2 To find diameter of solid cylinder using a vernier calliper - Introduction | | | 3 | 5 | Unit – II (Force & motion) Introduction Scalar and vector quantities –(Definition and examples), | 5 | Take the readings & perform the experiment | | | | 6 | Vector Algebra - Addition of Vectors, Triangle & Parallelogram Law Scalar and Vector Product (statement and formula only) | 6 | • Revise the experiment | | | 4 | 7 | Class TestASSIGNMENT | 7 | Experiment - 3 • To find internal diameter and depth of a beaker using a vernier calliper and hence find its volume Introduction | | | | 8 | Force and its units Concept of Resolution of force Newton's Law of motion (Statement and examples), | 8 | Take the readings | | | 5 | 9 | • First Sessional Test | 9 | Do calculation to find its volume & revise theexperiment | |---|----|---|----|---| | | 10 | Linear Momentum Law of Conservation of Linear
momentum Impulse PTM-I | 10 | Experiment - 4 • To find the diameter of wire using screw gauge - Introduction | | 6 | 11 | Circular motion Definition of angular displacement, angular velocity, angular acceleration, frequency, time period | 11 | Perform experiment & take the readings Revise the experiment | | | 12 | Relation between linear and angular velocity Centripetal forces (definition and formula only) Centrifugal forces (definition and formula only) | 12 | Experiment - 5 • To find thickness of paper using screw gaugeIntroduction | | 7 | 13 | Application of centripetal force in Banking of roads (derivation for angle of banking) | 13 | Perform experiment & take the readings | | | 14 | Rotational Motion : Definition with examples Definition of Torque Definition of angular momentum Moment of inertia & its physical significance | 14 | • Revise the experiment | | 8 | 15 | Unit – III (Work, Power and Energy) Introduction Work (Definition, Symbol, Formula and SI units) Types of work with example | 15 | Experiment - 6 • To determine the thickness of glass strip using a spherometer- Introduction | | | 16 | Class TestASSIGNMENT | 16 | Perform experiment & take the readings | | 9 | 17 | Friction – definition & its simple daily life applications Energy – Definition & its SI unit Examples of transformation of energy | 17 | • Revise the experiment | | | 18 | Kinetic Energy (Definition,formula,examples and its derivation) Potential Energy (Definition,formula,examples and its derivation) | 18 | Experiment - 7 • To determine radius of curvature of a given spherical surface by a spherometerIntroduct ion | | 10 | 19 | • Law of conservation of mechanical energy for freely falling bodies (With Derivation) | 19 | Perform experiment & take the readings | |----|----|--|----|--| | | 20 | Simple Numerical problems based on formula of
Power and Energy | 20 | Revise the experiment | | 11 | 21 | • Second Sessional Test | 21 | Experiment - 8 • To verify parallelogram law of forces- Introduction | | | 22 | Unit – IV (Properties of Matter) Introduction Elasticity and plasticity, Deforming force, Restoring force, Example of Elastic and plastic body Definition of Stress and strain PTM-II | 22 | Perform experiment & take the readings | | 12 | 23 | Hooke's law Modulus of Elasticity Pressure – definition Atmospheric pressure Gauge pressure Absolute pressure | 23 | • Revise the experiment | | | 24 | • ASSIGNMENT • Class Test | 24 | Experiment - 9 • To determine the atmospheric pressure at a place using Fortin's Barometer-Introduction | | 13 | 25 | Pascal's law Surface tension: definition, its units Applications of surface tension Effect of temperature on Surface Tension Viscosity: definition, units, effect of temperature on viscosity | 25 | (Setting up the apparatus) Perform experiment & take the readings | | | 26 | Unit – V (Heat and temperature) – Introduction Definition of heat and temperature Difference between heat and Temperature | 26 | Experiment - 10 • To determine force constant of spring using Hooke's law- Introduction | | 14 | 27 | Principle and working of mercury thermometer Modes of transfer of heat (Conduction, convection and radiation with examples). | 27 | (Setting up the apparatus) Perform experiment & take the readings | | | 28 | Properties of heat radiation Different scales of temperature and their relationship | | Experiment - 11 • Measuring room temperature with the help of thermometer and its conversion in different scale- Introduction | |----|----|--|----|--| | 15 | 29 | • Third Sessional Test | 29 | Perform experiment & take the readings | | | 30 | Analysis of TestPTM-III | 30 | Revision of Experiment |