LESSON PLAN

Name of the Faculty: Ms. Anita Kumari

<u>Discipline</u>: Civil. Engg.

Semester: 1st

Subject: Applied Chemistry

Lesson Plan Duration: 15 weeks

 $\underline{\textbf{Work Load (Lecture/Practical) per week (in hours):}} \ Lectures - 03, Practical - 02$

Week	Theory		Practical		
	Lecture Day	Topic (Including Assignment/Test)	Practical Day	Торіс	
1 st	1st	• Unit – 1: Atomic Structure, Periodic Table & Chemical Bonding - Introduction	1 st	To prepare standard solution of oxalic acid – introduction (G-1).	
	2 nd	Bohr's Model of an Atom	2 nd	To prepare standard solution of oxalic acid – introduction (G-2).	
	3rd	 Dual character of matter – derivation of de-Broglie's equation 			
2nd	4th	Heisenberg's Principle of Uncertainty	3rd	Perform the experiment & prepare a std. solution of oxalic acid (G-1).	
	5 th	 Modern concept of atomic structure: Definition & shape of orbitals (s, p & d orbitals) 	4th	Perform the experiment & prepare a std. solution of oxalic acid (G-2).	
	6 th	• Class test-1			
3rd	7 th	Quantum numbers & their significance	5th	To dilute the given KMnO ₄ solution – introduction (G-1).	
	8th	Electronic configuration: Aufbau, Pauli Exclusion Principles & Hund's rule.	6 th	To dilute the given KMnO ₄ solution – introduction (G-2).	
	9th	 Electronic configuration of elements up to Z = 30. 			
4 th	10 th	 Modern Periodic Law & Table, Classification of elements s, p, d, & f- blocks 	7 th	Perform the experiment & dilute the given solution (G-1).	
	11 th	Metals, Non-metals & Metaloids	8th	Perform the experiment & dilute the given solution (G-2).	
	12 th	Chemical Bonding: cause & types of bonding			
5 th	13 th	 Physical properties of ionic, covalent & metallic substances 	9th	To find out the strength in g/l of an unknown solution of NaOH using a std. (N/10) oxalic acid solution – introduction (G-1)	
	14 th	• Class test-II	10 th	To find out the strength in g/l of an unknown solution of NaOH using a std. (N/10) oxalic acid solution – introduction (G-2).	
	15 th	Sessional test-1Analysis of unit test			
6 th	16 th	 Unit - 2 Metals & Alloys – introduction. Metals: Mechanical properties Def. of mineral, ore, gangue, flux & slag 	11 th	 Perform the experiment and find out the strength of given NaOH Solution (G-1). 	

	17 th	 Alloy: Def., necessity, composition, properties & uses of Duralumin & steel Heat treatment of steel -normalizing, annualizing, quenching, tempering 	12 th	Perform the experiment and find out the strength of given NaOH Solution (G-2).
	18 th	Unit – 3 Water, Solutions, Acids & Bases Solutions: Def., expression of the conc. of a solution in % (w/w, w/v, v/v), normality, molarity, molality & ppm PTM-I		
7 th	19 th	Simple problems on solution preparation	13 th	To find out the total alkalinity in ppm of a water sample with the help of a std. sulphuric acid solution – introduction (G-1).
	20 th	 Arrhenius concept of Acids & Bases Strong and weak acids & bases 	14 th	To find out the total alkalinity in ppm of a water sample with the help of a std. sulphuric acid solution – introduction (G-2).
	21 th	Ph value & its significance Ph scale Numerical problems on pH Class test-III		
8th	22 th	 Types of water & causes of hardness of water Types of hardness Expression of hardness of water – ppm unit of hardness Disadvantages of hard water 	15 th	Perform the experiment and find out the total alkalinity (G- 1).
	23 th	Removal of Temporary hardness – boiling & Clark's method Removal of Permanent hardness – Ionexchange method	16 th	Perform the experiment and find out the total alkalinity (G-2).
	24 th	 Boiler problems caused by hard water scale & sludge formation Priming & foaming 		
9th	25 th	 Caustic embrittlement Water sterilization by Cl, UV radiation and RO 	17 th	To determine the total hardness of given water sample by EDTA method (G-1).
	26 th	Class test-IV Sessional test-2	18 th	To determine the total hardness of given water sample by EDTA method (G-2).
10 th	28 th	Analysis of test Unit - 4 Fuels & Lubricants Fuels: def., PTM-II	19 th	To determine the TDS in ppm in a given sample of water gravimetrically (G-1).
	29 th	 Calorific value – def., types & units Characteristics of an ideal fuel 	20 th	To determine the TDS in ppm in a given sample of water gravimetrically (G-2).
	30 th	Petroleum: composition & refining Gaseous fuels: Composition, properties & uses of CNG, PNG, LNG, LPG		
11 th	31 th	Relative advantages of liquid & gaseous fuels over solid fuels	21 th	To determine the pH of different solutions using a digital pH meter (G-1).
	32 th	Scope of Hydrogen as future fuel Lubricants: classification, functions & Qualities of lubricants	22 th	To determine the pH of different solutions using a digital pH meter (G-2).
12 th	34 th	Mechanism of Lubrication	23 th	To determine the calorific value of a solid/liquid fuel using a Bomb calorimeter (G-1).
	35 th	Physical properties of Lubricant Class test V.	24th	To determine the calorific value of a solid/liquid fuel using a Bomb calorimeter (G-2).
	op	Class test-V		

13 th	37 th	 Unit - 5 Polymer & Electrochemistry - introduction Polymers: Def., classification 	25 th	To determine the viscosity of lubricating oil using a Redwood viscometer – introduction (G-1).
	38 th	Preparation properties & uses of polythene, PVC, Nylon-66, Bakelite	26 th	To determine the viscosity of lubricating oil using a Redwood viscometer – introduction (G-2).
	39 th	Plastic: Def. & types Natural rubber, neoprene & other synthetic rubber		
14 th	40 th	Corrosion: Def., types & factors affecting rate of corrosion	27 th	 Perform the experiment and find out the viscosity of given lubricant oil (G-1).
	41 th	Methods of prevention of corrosion – Hot dipping, metal cladding, cementation Quenching & cathodic protection Class test-VI	28 th	 Perform the experiment and find out the viscosity of given lubricant oil (G-2).
	42 th	Sessional test-III		
15 th	43th	Nanotechnology: intro & application PTM-III	29 th	To prepare a sample of Phenol-formaldehyde resin (Bakelite)/Nylon-66 in the lab (G-1).
	44 th	Nano-materials & their classification	30 th	 To prepare a sample of Phenol-formaldehyde resin (Bakelite)/Nylon-66 in the lab (G-2).
	45 th	 Applications of nanotechnology in various engineering applications. 		