LESSON PLAN Name of the Faculty: Ms. Anita Kumari <u>Discipline</u>: Civil. Engg. Semester: 1st **Subject:** Applied Chemistry **Lesson Plan Duration**: 15 weeks $\underline{\textbf{Work Load (Lecture/Practical) per week (in hours):}} \ Lectures - 03, Practical - 02$ | Week | Theory | | Practical | | | |-----------------|------------------|--|------------------|--|--| | | Lecture
Day | Topic
(Including Assignment/Test) | Practical
Day | Торіс | | | 1 st | 1st | • Unit – 1: Atomic Structure, Periodic Table & Chemical Bonding - Introduction | 1 st | To prepare standard solution of oxalic acid – introduction (G-1). | | | | 2 nd | Bohr's Model of an Atom | 2 nd | To prepare standard solution of oxalic acid – introduction (G-2). | | | | 3rd | Dual character of matter – derivation
of de-Broglie's equation | | | | | 2nd | 4th | Heisenberg's Principle of Uncertainty | 3rd | Perform the experiment & prepare a std. solution of oxalic acid (G-1). | | | | 5 th | Modern concept of atomic structure:
Definition & shape of orbitals (s, p & d
orbitals) | 4th | Perform the experiment & prepare a std. solution of oxalic acid (G-2). | | | | 6 th | • Class test-1 | | | | | 3rd | 7 th | Quantum numbers & their significance | 5th | To dilute the given KMnO ₄ solution – introduction (G-1). | | | | 8th | Electronic configuration: Aufbau, Pauli
Exclusion Principles & Hund's rule. | 6 th | To dilute the given KMnO ₄ solution – introduction (G-2). | | | | 9th | Electronic configuration of elements
up to Z = 30. | | | | | 4 th | 10 th | Modern Periodic Law & Table,
Classification of elements s, p, d, & f-
blocks | 7 th | Perform the experiment & dilute the given solution (G-1). | | | | 11 th | Metals, Non-metals & Metaloids | 8th | Perform the experiment & dilute the given solution (G-2). | | | | 12 th | Chemical Bonding: cause & types of bonding | | | | | 5 th | 13 th | Physical properties of ionic, covalent & metallic substances | 9th | To find out the strength in g/l of an unknown solution of
NaOH using a std. (N/10) oxalic acid solution –
introduction (G-1) | | | | 14 th | • Class test-II | 10 th | To find out the strength in g/l of an unknown solution of NaOH using a std. (N/10) oxalic acid solution – introduction (G-2). | | | | 15 th | Sessional test-1Analysis of unit test | | | | | 6 th | 16 th | Unit - 2 Metals & Alloys – introduction. Metals: Mechanical properties Def. of mineral, ore, gangue, flux & slag | 11 th | Perform the experiment and find out the strength of given
NaOH Solution (G-1). | | | | 17 th | Alloy: Def., necessity, composition,
properties & uses of Duralumin & steel Heat treatment of steel -normalizing,
annualizing, quenching, tempering | 12 th | Perform the experiment and find out the strength of given NaOH Solution (G-2). | |------------------|------------------|--|------------------|--| | | 18 th | Unit – 3 Water, Solutions, Acids & Bases Solutions: Def., expression of the conc. of a solution in % (w/w, w/v, v/v), normality, molarity, molality & ppm PTM-I | | | | 7 th | 19 th | Simple problems on solution preparation | 13 th | To find out the total alkalinity in ppm of a water sample with the help of a std. sulphuric acid solution – introduction (G-1). | | | 20 th | Arrhenius concept of Acids & Bases Strong and weak acids & bases | 14 th | To find out the total alkalinity in ppm of a water sample with
the help of a std. sulphuric acid solution – introduction (G-2). | | | 21 th | Ph value & its significance Ph scale Numerical problems on pH Class test-III | | | | 8th | 22 th | Types of water & causes of hardness of water Types of hardness Expression of hardness of water – ppm unit of hardness Disadvantages of hard water | 15 th | Perform the experiment and find out the total alkalinity (G- 1). | | | 23 th | Removal of Temporary hardness – boiling & Clark's method Removal of Permanent hardness – Ionexchange method | 16 th | Perform the experiment and find out the total alkalinity (G-2). | | | 24 th | Boiler problems caused by hard water scale & sludge formation Priming & foaming | | | | 9th | 25 th | Caustic embrittlement Water sterilization by Cl, UV radiation
and RO | 17 th | To determine the total hardness of given water sample
by EDTA method (G-1). | | | 26 th | Class test-IV Sessional test-2 | 18 th | To determine the total hardness of given water sample by
EDTA method (G-2). | | 10 th | 28 th | Analysis of test Unit - 4 Fuels & Lubricants Fuels: def., PTM-II | 19 th | To determine the TDS in ppm in a given sample of water gravimetrically (G-1). | | | 29 th | Calorific value – def., types & units Characteristics of an ideal fuel | 20 th | To determine the TDS in ppm in a given sample of water gravimetrically (G-2). | | | 30 th | Petroleum: composition & refining Gaseous fuels: Composition, properties & uses of CNG, PNG, LNG, LPG | | | | 11 th | 31 th | Relative advantages of liquid & gaseous fuels
over solid fuels | 21 th | To determine the pH of different solutions using a digital pH meter (G-1). | | | 32 th | Scope of Hydrogen as future fuel Lubricants: classification, functions & Qualities of lubricants | 22 th | To determine the pH of different solutions using a digital pH meter (G-2). | | 12 th | 34 th | Mechanism of Lubrication | 23 th | To determine the calorific value of a solid/liquid fuel using a Bomb calorimeter (G-1). | | | 35 th | Physical properties of Lubricant Class test V. | 24th | To determine the calorific value of a solid/liquid fuel using a Bomb calorimeter (G-2). | | | op | Class test-V | | | | 13 th | 37 th | Unit - 5 Polymer & Electrochemistry - introduction Polymers: Def., classification | 25 th | To determine the viscosity of lubricating oil using a Redwood viscometer – introduction (G-1). | |------------------|------------------|---|------------------|--| | | 38 th | Preparation properties & uses of
polythene, PVC, Nylon-66, Bakelite | 26 th | To determine the viscosity of lubricating oil using a Redwood viscometer – introduction (G-2). | | | 39 th | Plastic: Def. & types Natural rubber, neoprene & other synthetic rubber | | | | 14 th | 40 th | Corrosion: Def., types & factors affecting rate of corrosion | 27 th | Perform the experiment and find out the viscosity of given
lubricant oil (G-1). | | | 41 th | Methods of prevention of corrosion – Hot dipping, metal cladding, cementation Quenching & cathodic protection Class test-VI | 28 th | Perform the experiment and find out the viscosity of given
lubricant oil (G-2). | | | 42 th | Sessional test-III | | | | 15 th | 43th | Nanotechnology: intro & application PTM-III | 29 th | To prepare a sample of Phenol-formaldehyde resin (Bakelite)/Nylon-66 in the lab (G-1). | | | 44 th | Nano-materials & their classification | 30 th | To prepare a sample of Phenol-formaldehyde resin
(Bakelite)/Nylon-66 in the lab (G-2). | | | 45 th | Applications of nanotechnology in
various engineering applications. | | |